|  | @@ -121,10 +121,10 @@ class Mvp:
 | 
	
		
			
				|  |  |          # self.shangju_db.truncate('mvp_question_classification')
 | 
	
		
			
				|  |  |          # self.shangju_db.add_some(self.sql_3, datas)
 | 
	
		
			
				|  |  |          scores_behavioral = self.city_age_crowd(city, age, crowd)
 | 
	
		
			
				|  |  | -        scores_module = self.module_score(crowd, city, age, scores_behavioral['score'])
 | 
	
		
			
				|  |  | -        result = {'行为兴趣分值': scores_behavioral['score'], '模块分值': scores_module}
 | 
	
		
			
				|  |  | +        # scores_module = self.module_score(crowd, city, age, scores_behavioral['score'])
 | 
	
		
			
				|  |  | +        #result = {'行为兴趣分值': scores_behavioral['score'], '模块分值': scores_module}
 | 
	
		
			
				|  |  |          print('update finished!!!')
 | 
	
		
			
				|  |  | -        return result
 | 
	
		
			
				|  |  | +        return scores_behavioral
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      def module_score(self, crowd, city, age, scores):
 | 
	
		
			
				|  |  |          """
 | 
	
	
		
			
				|  | @@ -178,6 +178,7 @@ class Mvp:
 | 
	
		
			
				|  |  |      def city_age_crowd(self, city=None, age=None, crowd=None):
 | 
	
		
			
				|  |  |          data_start = []
 | 
	
		
			
				|  |  |          result = []
 | 
	
		
			
				|  |  | +        module_scores = []
 | 
	
		
			
				|  |  |          if city is not None and age is not None and crowd is not None:
 | 
	
		
			
				|  |  |              print('获取指定城市,年龄段,人群类型的数据...')
 | 
	
		
			
				|  |  |              people_uuids = self.get_people_uuid_by_type(crowd)
 | 
	
	
		
			
				|  | @@ -186,6 +187,7 @@ class Mvp:
 | 
	
		
			
				|  |  |                  datas = self.behavior_tag_init(city, age, people_uuids)
 | 
	
		
			
				|  |  |                  data_start.append(datas)
 | 
	
		
			
				|  |  |                  result.extend(self.calculation_standard_score(datas, city, age, crowd))
 | 
	
		
			
				|  |  | +            module_scores.extend(self.module_score(crowd, city, age, result))
 | 
	
		
			
				|  |  |              pass
 | 
	
		
			
				|  |  |          else:
 | 
	
		
			
				|  |  |              print('获取所有case的数据...')
 | 
	
	
		
			
				|  | @@ -200,17 +202,18 @@ class Mvp:
 | 
	
		
			
				|  |  |                          datas = self.behavior_tag_init(city, age, people_uuids)
 | 
	
		
			
				|  |  |                          data_start.append(datas)
 | 
	
		
			
				|  |  |                          result.extend(self.calculation_standard_score(datas, city, age, crowd_type))
 | 
	
		
			
				|  |  | +                    module_scores.extend(self.module_score(crowd_type, city, age, result))
 | 
	
		
			
				|  |  |          # return result
 | 
	
		
			
				|  |  | -        data_list = []
 | 
	
		
			
				|  |  | -        for e in data_start:
 | 
	
		
			
				|  |  | -            for key in e.keys():
 | 
	
		
			
				|  |  | -                values = e[key]
 | 
	
		
			
				|  |  | -                for sub_e in values:
 | 
	
		
			
				|  |  | -                    ele = [key]
 | 
	
		
			
				|  |  | -                    ele.extend(sub_e)
 | 
	
		
			
				|  |  | -                    data_list.append(ele)
 | 
	
		
			
				|  |  | -            pass
 | 
	
		
			
				|  |  | -        return {'score': result}
 | 
	
		
			
				|  |  | +        # data_list = []
 | 
	
		
			
				|  |  | +        # for e in data_start:
 | 
	
		
			
				|  |  | +        #     for key in e.keys():
 | 
	
		
			
				|  |  | +        #         values = e[key]
 | 
	
		
			
				|  |  | +        #         for sub_e in values:
 | 
	
		
			
				|  |  | +        #             ele = [key]
 | 
	
		
			
				|  |  | +        #             ele.extend(sub_e)
 | 
	
		
			
				|  |  | +        #             data_list.append(ele)
 | 
	
		
			
				|  |  | +        #     pass
 | 
	
		
			
				|  |  | +        return {'tag_score': result, 'module_score': module_scores}
 | 
	
		
			
				|  |  |          # return {'score': result, 'data': data_list}
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      def behavior_tag_init(self, city, age, people_uuids):
 |